ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Russell M. Ball, Gary S. Hoovler, Robert H. Lewis
Nuclear Science and Engineering | Volume 120 | Number 3 | July 1995 | Pages 223-230
Technical Paper | doi.org/10.13182/NSE95-A24121
Articles are hosted by Taylor and Francis Online.
Benchmarkings of neutronic calculations are most successful when there is a direct correlation between a measurement and an analytic result. In the thermal neutron energy region, the fluence rate as a function of moderator temperature and position within the moderator is an area of potential correlation. The measurement can be done by activating natural lutetium. The two isotopes of the element lutetium have widely differing cross sections and permit the discrimination of flux shape and energy distributions at different reactor conditions. The 175Lu has a 1/v dependence in the thermal energy region, and 176Lu has a resonance structure that approximates a constant cross section in the same region. The saturation activation of the two isotopes has been measured in an insulated moderator container at the center of a thermal heterogeneous reactor designed for space nuclear propulsion. The measurements were made in a hydrogenous (polyethylene) moderator at three temperatures (83, 184, and 297 K) and five locations within the moderator. Simultaneously, the reactivity effect of the change in the moderator temperature was determined to be positive with an increase in temperature. The plot of activation shows the variation in neutron fluence rate and current with temperature and explains the positive reactivity coefficient. A neutron temperature can be inferred from a postulated Maxwell-Boltzmann distribution and compared with Monte Carlo or other calculations.