ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Y. Namito, S. Ban, H. Hirayama
Nuclear Science and Engineering | Volume 120 | Number 3 | July 1995 | Pages 199-210
Technical Paper | doi.org/10.13182/NSE95-A24119
Articles are hosted by Taylor and Francis Online.
The effects of including linear polarization and Doppler broadening of the Compton-scattered photon energy, i.e., the Compton profile, in a calculation of the exposure buildup factors for plane normal gamma-ray sources are investigated by using an improved electron gamma shower Monte Carlo code, EGS4, for water, iron, and lead in the 40- to 250-keV range for penetration depths of up to 16 mean free paths (mfp). The effects of including the bound Compton total cross section (&sigmabC) and the bound Compton-scattered photon angular distribution by using the incoherent-scattering function [S(x, Z)] were also evaluated. The “pseudo” exposure buildup factors were calculated to determine these effects combined with the effects of Rayleigh and/or Compton scattering. The pseudo exposure buildup factor increases at points farther than a few mfp’s and decreases in the neighborhood of the source upon including linear polarization. It decreases upon including Doppler broadening. The degree of each effect varies with the atomic number of the material. The effect of linear polarization is large for materials of small atomic number; that of the Doppler broadening is large for materials of medium and large atomic number.