ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
A. Monier
Nuclear Science and Engineering | Volume 120 | Number 2 | June 1995 | Pages 91-101
Technical Paper | doi.org/10.13182/NSE95-A24110
Articles are hosted by Taylor and Francis Online.
A piecewise polynomial collocation approximation of the shape function is applied to Volterra’s form of the quasi-static equations. This formulation of the quasi-static method does not require the imposition of an arbitrary constraint. The resulting set of nonlinear unconstrained quasi-static (UQS) equations is solved by using fixed-point iteration. The shape equation, which is similar in form to those obtained by using Padé’s algorithms, is solved with a second-order variational minimization technique. The results of this formulation are then compared with other quasi-static solutions for a typical Canada deuterium uranium (CANDU) reactor safety analysis calculation.