ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
S. M. Ghiaasiaan, K. E. Taylor, B. K. Kamboj, S. I. Abdel-Khalik
Nuclear Science and Engineering | Volume 119 | Number 3 | March 1995 | Pages 182-194
Technical Paper | doi.org/10.13182/NSE95-A24084
Articles are hosted by Taylor and Francis Online.
Hydrodynamic characteristics of countercurrent two-phase flow in vertical and inclined channels are investigated. Experiments are performed using air and water at room temperature (25 to 27° C) and 160-kPa pressure, in a 208-cm-long, transparent, tubular test section with a 1.9-cm inner diameter. Tests are systematically performed with downward liquid superficial velocities and upward gas superficial velocities covering the 0 to 10 and 0 to 150 cm/s ranges, respectively, with 0-, 8-, 28-, 45-, and 60-deg angles of inclination with respect to the vertical line. Experimental flow regime maps are provided for all the aforementioned angles of inclination. For the vertical channel configuration, the obtained data are compared with existing data and flow regime transition models. Test section average void fractions are found to be sensitive to the channel angle of inclination. For the vertical channel configuration, the data are compared with the previously published data and empirical correlations.