ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Ken Nakajima, Masanori Akai, Takenori Suzaki
Nuclear Science and Engineering | Volume 119 | Number 3 | March 1995 | Pages 175-181
Technical Paper | doi.org/10.13182/NSE95-A24083
Articles are hosted by Taylor and Francis Online.
The modified conversion ratio (MCR) (the ratio of the 238U capture rate to the total fission rate) in a light-water-moderated uranium-plutonium mixed-oxide- (MOX-) fuel lattice was measured for four types of lattices with different plutonium enrichment. In the current method, the relative reaction rates of 238U capture and total fission were obtained from nondestructive gamma-ray spectrometry of 239Np and fission products, respectively, which accumulated in the fuel rod irradiated at the Tank-Type Critical Assembly. The measured results of the fission rates derived from two different fission products agreed well with each other, and the measured MCRs showed good agreement with the results of the Monte Carlo calculation with the whole-core model. Therefore, the current nondestructive method is applicable to the MCR measurement of MOX fuel.