ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
M. W. Mickael
Nuclear Science and Engineering | Volume 119 | Number 1 | January 1995 | Pages 34-43
Technical Paper | doi.org/10.13182/NSE95-A24069
Articles are hosted by Taylor and Francis Online.
A fast automated method is developed to estimate particle importance in the Los Alamos Monte Carlo code MCNP. It provides an automated and efficient way of predicting and setting up an important map for the weight windows technique. A short analog simulation is first performed to obtain effective group parameters based on the input description of the problem. A solution of the multigroup time-dependent adjoint diffusion equation is then used to estimate particle importance. At any point in space, time, and energy, the particle importance is determined, based on the calculated parameters, and used as the lower limit of the weight window. The method has been tested for neutron, photon, and coupled neutron-photon problems. Significant improvement in the simulation efficiency is obtained using this technique at no additional computer time and with no prior knowledge of the nature of the problem. Moreover, time and angular importance that are not available yet in MCNP are easily implemented in this method.