ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
B. T. Adams, J. E. Morel
Nuclear Science and Engineering | Volume 115 | Number 3 | November 1993 | Pages 253-264
Technical Paper | doi.org/10.13182/NSE115-253
Articles are hosted by Taylor and Francis Online.
A two-grid acceleration scheme for the multigroup Sn equations with neutron upscattering is developed. Although it has been tested only in one-dimensional slab geometry with linear-discontinuous spatial differencing, previous experience suggests that it should be applicable in any geometry with any spatial differencing scheme for which an unconditionally efficient diffusion-synthetic acceleration scheme exists. The method is derived, theoretically analyzed, and computationally tested. The results indicate that the scheme is unconditionally effective in terms of error reduction per iteration and highly efficient in terms of computational cost.