ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Matthias G. Döring, Jens Chr. Kalkkuhl, Wolfram Schröder
Nuclear Science and Engineering | Volume 115 | Number 3 | November 1993 | Pages 244-252
Technical Paper | doi.org/10.13182/NSE93-A24053
Articles are hosted by Taylor and Francis Online.
Often in reactor dynamics, higher eigenfunctions of the multigroup diffusion equation must be determined. An algorithm to calculate higher eigenfunctions (modes) of the λ-eigenvalue problem corresponding to the steady-state two-group neutron diffusion equation is presented. The method is based on a special type of subspace iteration for large sparse nonsymmetric eigenvalue problems. Having been tested using an International Atomic Energy Agency benchmark problem and also applied to a VVER-1000pressurized water reactor assembly, the algorithm was found to work very effectively and reliably. In its application, the algorithm presented is not restricted to the λ-eigenvalue problem only but is also generally applicable to large sparse nonsymmetric eigenvalue problems even with multiple and complex eigenvalues.