ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
R. A. Schrack, O. A. Wasson,D. C. Larson, J. K. Dickens, J. H. Todd
Nuclear Science and Engineering | Volume 114 | Number 4 | August 1993 | Pages 352-362
Technical Paper | doi.org/10.13182/NSE93-A24044
Articles are hosted by Taylor and Francis Online.
Relative cross-section measurements for the 10B(n, α1γ)7Li reaction were made using the Oak Ridge Electron Linear Accelerator Laboratory neutron source. The cross sections were measured by observing the 478-keV photon using an intrinsic germanium detector. The neutron flux was monitored with a high-efficiency plastic scintillator. Monte Carlo calculations were used to provide multiple-scattering and neutron-attenuation corrections to the data. The measured cross sections differ as much as 40% from the ENDF/B-VI evaluation for incident neutron energies greater than 1.5 MeV.