ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
James W. Bryson, John C. Lee, Jeré A. Hassberger
Nuclear Science and Engineering | Volume 114 | Number 3 | July 1993 | Pages 238-251
Technical Paper | doi.org/10.13182/NSE93-A24037
Articles are hosted by Taylor and Francis Online.
Two methods are presented for optimally calculating spatial distributions of neutron flux in a nuclear reactor core. Both techniques, Kalman filtering and maximum likelihood estimation, simultaneously account for all initial information contained in the nominal core specifications and in-core measurements, as well as all of the uncertainties within the system, to provide a minimum variance estimate of neutron flux. These methods resolve discrepancies in the initial information in a statistically optimal manner, thereby providing valuable insight into the nature of the optimal solution obtained. Despite radically different algorithms, both methods yield the same minimum variance estimate for the quantity of interest. The algorithms have been successfully tested for one-dimensional axial and two-dimensional x-y flux mapping problems with simulated in-core data sets.