ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
L. M. Gomes, P. N. Stevens
Nuclear Science and Engineering | Volume 114 | Number 3 | July 1993 | Pages 228-237
Technical Paper | doi.org/10.13182/NSE93-A24036
Articles are hosted by Taylor and Francis Online.
Ray effects, an inherent problem in the formulation of the discrete ordinates approximation to the transport equation, are studied. In particular, the effectiveness of using Monte Carlo procedures to generate a first or second collision source is investigated. Monte Carlo procedures provide a general methodology that can be applied to the discrete ordinates solution of complex problems in either two-dimensional or three-dimensional geometries for which ray effects are likely to occur. The Monte Carlo method, which is intrinsically free of ray effects, performs the transport of the source particle to the first collision sites, at which estimates for the uncollided fluxes are made. The uncollided fluxes are then used to compute the first collided fluxes. The uncollided, collided, or first collided fluxes are calculated as first or second collision scattering sources in a format suitable for input into the DORT two-dimensional and TORT three-dimensional discrete ordinates codes. The computational time and precision requirements of the Monte Carlo calculation are analyzed. The results show that significant improvements are achieved in the solution of test problems when using the estimated first collision source and that ray effects are virtually eliminated when using the estimated second collision source.