ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
T. W. L. Sanford, L. J. Lorence, J. A. Halbleib, J. G. Kelly, P. J. Griffin, J. W. Poukey, W. H. McAtee, R. C. Mock
Nuclear Science and Engineering | Volume 114 | Number 3 | July 1993 | Pages 190-213
Technical Paper | doi.org/10.13182/NSE93-A24033
Articles are hosted by Taylor and Francis Online.
An intense reusable source of pulsed photoneutrons is developed that produces ≈0.5 or 1.0 × 1014 neutrons in an ∼15-ns pulse from natural lead or depleted uranium, respectively, on the HERMES III electron accelerator. Corresponding to this source, a numerical model is developed that is applicable to other pulsed-power systems. If Vp represents the peak voltage of HERMES III measured in megavolts, then model predictions show that over the range 12 MV < Vp< 20 MV, the number of neutrons produced per incident electron is 7.2 × 10-6(VP — 11)2.0 and 1.2 × 10-6(VP — 7.4)2 8 in lead and uranium, respectively. Measurements using a set of nuclear activation foils confirm these predictions as well as predictions of the spatial and spectral distribution of the neutrons at Vp = 19 MV.