ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
Edward W. Larsen
Nuclear Science and Engineering | Volume 112 | Number 4 | December 1992 | Pages 336-346
Technical Paper | doi.org/10.13182/NSE92-A23982
Articles are hosted by Taylor and Francis Online.
A well-known asymptotic analysis describes the transition of transport theory to diffusion theory in the limit of optically thick systems with small absorption and sources. Recently, this analysis has been applied to discretized transport algorithms. The results of this analysis, which provide information on accuracy and iteration efficiency, cannot be obtained from standard truncation error analyses because in the asymptotic limit, the optical thickness of a spatial cell generally tends to infinity. The ideas underlying this analysis are described, the main results are reviewed, and some open questions are discussed.