ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Ariz. governor vetoes “fast track” bill for nuclear
Gov. Katie Hobbs put the brakes on legislation that would have eliminated some of Arizona’s regulations and oversight of small modular reactors, technology that is largely under consideration by data centers and heavy industrial power users.
C. K. Paulson, E. J. Hennelly
Nuclear Science and Engineering | Volume 55 | Number 1 | September 1974 | Pages 24-27
Technical Paper | doi.org/10.13182/NSE74-A23962
Articles are hosted by Taylor and Francis Online.
High-energy neutron cross sections for 237Np are needed to calculate unwanted 236Pu contaminant in 238Pu product made for heat source applications in space and medical projects. Recent improved determination of 236Pu formation by 237Np(n, 2n) reactions completes the information needed to calculate 236Pu/238Pu ratios over a wide range of 237Np irradiation environments, from D2O reflectors to pressurized-water-reactor fuel. The 237Np(n, 2n) 236&Np cross section is 63 ± 6 mb, averaged over the 235U fission spectrum >6.8 MeV; this result is consistent with the cross section calculated by Pearlstein.