ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
C. K. Paulson, E. J. Hennelly
Nuclear Science and Engineering | Volume 55 | Number 1 | September 1974 | Pages 24-27
Technical Paper | doi.org/10.13182/NSE74-A23962
Articles are hosted by Taylor and Francis Online.
High-energy neutron cross sections for 237Np are needed to calculate unwanted 236Pu contaminant in 238Pu product made for heat source applications in space and medical projects. Recent improved determination of 236Pu formation by 237Np(n, 2n) reactions completes the information needed to calculate 236Pu/238Pu ratios over a wide range of 237Np irradiation environments, from D2O reflectors to pressurized-water-reactor fuel. The 237Np(n, 2n) 236&Np cross section is 63 ± 6 mb, averaged over the 235U fission spectrum >6.8 MeV; this result is consistent with the cross section calculated by Pearlstein.