ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
W. B. Amian, R. C. Byrd, C. A. Goulding, M. M. Meier, G. L. Morgan, C. E. Moss, D. A. Clark
Nuclear Science and Engineering | Volume 112 | Number 1 | September 1992 | Pages 78-86
Technical Paper | doi.org/10.13182/NSE92-A23953
Articles are hosted by Taylor and Francis Online.
Differential (p,xn) cross sections are measured for 800-MeV protons incident on thin targets of depleted uranium and of natural beryllium, boron, carbon, nitrogen, oxygen, aluminum, iron, cadmium, tungsten, and lead. Measurements for neutron energies from 0.3 to 800 MeV are made at angles of30, 60, 120, and 150 deg. Time-of-flight techniques are used to determine the neutron energy spectra, and particular effort is made to identify and discriminate against background contributions. Comparisons of the experimental data with calculations using the high-energy transport code (HETC) intranuclear-cascade evaporation model show good agreement for the heaviest elements (tungsten, lead, and uranium), but significant discrepancies exist for the light elements, especially in the evaporation region.