ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
W. L. Filippone, Jim E. Morel, Wallace F. Walters
Nuclear Science and Engineering | Volume 112 | Number 1 | September 1992 | Pages 1-15
Technical Paper | doi.org/10.13182/NSE92-A23947
Articles are hosted by Taylor and Francis Online.
Beam source problems are difficult to treat numerically because of the associated singularities in angle and space. For electrons, conventional first collision source techniques offer little help because the cross sections are so large and anisotropic that the first collision source and original source are not very different. By extending the definition of the uncollided flux to include particles that have not deviated significantly from the original beam direction, an extended first collision source is obtained that is smooth enough for use in SN codes. Through the use of effective cross sections, the extended first collision source is determined using standard first collision source techniques. The effective cross sections model electron transport with a reduced number of collisions, but larger deflections per collision. These qross sections are generated using a brute-force SN solution of the space-independent Spencer-Lewis equation on a restricted cone of directions, centered about the beam direction. Several sample calculations are given.