ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
G. Aliberti, G. Palmiotti, M. Salvatores, C. G. Stenberg
Nuclear Science and Engineering | Volume 146 | Number 1 | January 2004 | Pages 13-50
Technical Paper | doi.org/10.13182/NSE02-94
Articles are hosted by Taylor and Francis Online.
The potential impact of nuclear data uncertainties on a large number of performance parameters of reactor cores dedicated to the transmutation of radioactive wastes is discussed. An uncertainty analysis has been performed based on sensitivity theory, which underlines the cross sections, the energy range, and the isotopes that are responsible for the most significant uncertainties.To provide guidelines on priorities for new evaluations or validation experiments, required accuracies on specific nuclear data have been derived, accounting for target accuracies on major design parameters. The required accuracies (mostly in the energy region below 20 MeV), in particular for minor actinide data, are of the same order of magnitude of the achieved accuracies on major actinides. Specific requirements also concern the improvement of minor actinide data related to decay heat and effective delayed-neutron fraction assessment.