ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
K. R. Anderson , J. F. Stubbins, F. A. Garner
Nuclear Science and Engineering | Volume 110 | Number 4 | April 1992 | Pages 394-407
Technical Paper | doi.org/10.13182/NSE92-A23913
Articles are hosted by Taylor and Francis Online.
Three spinodally strengthened copper alloys were irradiated with fast neutrons to 34 displacements per atom (dpa) at 414°C, 50 dpa at 411°C, and 32 dpa at 529°C in order to assess their suitability for high-temperature service in neutron environments. Density, electrical conductivity, tensile property, and fracture behavior changes were determined with emphasis on the microstructural reasons for the changes observed. These spinodally strengthened alloys were found to exhibit improved properties following irradiation, and they show merit for use in high-temperature neutron environments, although their low initial conductivity may be a limitation. The results are compared to those of high-purity, unalloyed copper.