ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
T. F. Wimett
Nuclear Science and Engineering | Volume 110 | Number 3 | March 1992 | Pages 209-236
Technical Paper | doi.org/10.13182/NSE90-149
Articles are hosted by Taylor and Francis Online.
Large dynamic stresses are induced in the fuel components of fast-burst, or pulse, reactors because of rapid fission heating. These stresses increase more than linearly with burst energy yield and, at some yield, will cause fuel failure. Despite many attempts, no one has yet succeeded in predicting a fuel damage threshold with useful certainty in the reactor design stage, nor has the maximum fuel stress for a given power pulse in an operating reactor been calculated satisfactorily. Some analytic solutions for the burst dynamic behavior of typical fuel components that are consistent with available fuel displacement measurements are discussed. In particular, an analytic function is introduced for stress-vibration excitation of fuel components by the bell-shaped power pulse of a reactor burst. These solutions can be employed to determine fuel damage thresholds with useful certainty. Also, a new approach is presented for the analysis of prompt burst power transients by employing fuel displacement solutions to derive dynamic reactivity quench for use in power calculations.