ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
T. F. Wimett
Nuclear Science and Engineering | Volume 110 | Number 3 | March 1992 | Pages 209-236
Technical Paper | doi.org/10.13182/NSE90-149
Articles are hosted by Taylor and Francis Online.
Large dynamic stresses are induced in the fuel components of fast-burst, or pulse, reactors because of rapid fission heating. These stresses increase more than linearly with burst energy yield and, at some yield, will cause fuel failure. Despite many attempts, no one has yet succeeded in predicting a fuel damage threshold with useful certainty in the reactor design stage, nor has the maximum fuel stress for a given power pulse in an operating reactor been calculated satisfactorily. Some analytic solutions for the burst dynamic behavior of typical fuel components that are consistent with available fuel displacement measurements are discussed. In particular, an analytic function is introduced for stress-vibration excitation of fuel components by the bell-shaped power pulse of a reactor burst. These solutions can be employed to determine fuel damage thresholds with useful certainty. Also, a new approach is presented for the analysis of prompt burst power transients by employing fuel displacement solutions to derive dynamic reactivity quench for use in power calculations.