ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Kiyonobu Yamashita, Isao Murata, Ryuichi Shindo
Nuclear Science and Engineering | Volume 110 | Number 2 | February 1992 | Pages 177-185
Technical Notes | doi.org/10.13182/NSE92-A23887
Articles are hosted by Taylor and Francis Online.
The accuracy of the nuclear design code system for the High-Temperature Engineering Test Reactor (HTTR) is evaluated for the neutronic characteristics that depend on core temperature by analyzing the overall temperature coefficients of reactivity and the effective multiplication factors obtained by an experiment in which the Very High Temperature Reactor Critical Assembly (VHTRC) is heated from ambient temperature to 200°C. The core of the VHTRC consists of block-type fuel containing low-enriched uranium (LEU). The nuclear design code system for the HTTR includes the DELIGHT, TWOTRAN-2, and CITATION-1000VP computer codes. The DELIGHT code is a one-dimensional cell burnup code developed to evaluate the nuclear characteristics of HTTR fuel and to calculate the group constants. The calculated overall temperature coefficients of reactivity between ambient temperature and 200°C agree well with the measured coefficients, and the calculated effective multiplication factors for different temperatures agree with measured factors within an uncertainty of 0.6%. From the results, it is concluded that the nuclear design code system for the HTTR predicts well the temperature-dependent neutronic characteristics of a core containing LEU fuel.