ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S.Landsberger, P. K. Hopke, M. D. Cheng
Nuclear Science and Engineering | Volume 110 | Number 1 | January 1992 | Pages 79-83
Technical Paper | doi.org/10.13182/NSE92-A23877
Articles are hosted by Taylor and Francis Online.
To test the recent advances in receptor modeling for the identification of long-range transport of regional source signatures of airborne particulate matter, an epithermal irradiation facility to determine indium has been specifically constructed. Analysis of filter samples collected weekly over a 5-yr period has indicated that indium in the arctic atmosphere is strongly dependent on season. Typical detection limits were 0.1 ng per one-eighth of a 20.3- × 25.4-cm Whatman filter. The airborne concentrations of indium are extremely elevated in the winter and spring months, and they almost disappear in the summer months. The application of the potential source contribution function has indicated that the indium originates from several areas in Eurasia as well as from known “hot spots” in North America.