ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Andreas Pautz, Adolf Birkhofer
Nuclear Science and Engineering | Volume 145 | Number 3 | November 2003 | Pages 320-341
Technical Paper | doi.org/10.13182/NSE03-A2386
Articles are hosted by Taylor and Francis Online.
We introduce a new coupled neutronics/thermal hydraulics code system for analyzing transients of nuclear power plants and research reactors, based on a neutron transport theory approach. For the neutron kinetics, we have developed the code DORT-TD, a time-dependent extension of the well-known discrete ordinates code DORT. DORT-TD uses a fully implicit time integration scheme and is coupled via a general interface to the thermal hydraulics system code ATHLET, a generally applicable code for the analyses of LWR accident scenarios. Feedback is accounted for by interpolating multigroup cross sections from precalculated libraries, which are generated in advance for user-specified, discrete sets of thermal hydraulic parameters, e.g., fuel and coolant temperature. The coupled code system is applied to the high-flux research reactor FRM-II (Germany). Several design basis accidents are considered, namely the unintended control rod withdrawal, the loss of offsite power, and the loss of the secondary heat sink as well as a hypothetical transient with large reactivity insertion.