ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Andreas Pautz, Adolf Birkhofer
Nuclear Science and Engineering | Volume 145 | Number 3 | November 2003 | Pages 320-341
Technical Paper | doi.org/10.13182/NSE03-A2386
Articles are hosted by Taylor and Francis Online.
We introduce a new coupled neutronics/thermal hydraulics code system for analyzing transients of nuclear power plants and research reactors, based on a neutron transport theory approach. For the neutron kinetics, we have developed the code DORT-TD, a time-dependent extension of the well-known discrete ordinates code DORT. DORT-TD uses a fully implicit time integration scheme and is coupled via a general interface to the thermal hydraulics system code ATHLET, a generally applicable code for the analyses of LWR accident scenarios. Feedback is accounted for by interpolating multigroup cross sections from precalculated libraries, which are generated in advance for user-specified, discrete sets of thermal hydraulic parameters, e.g., fuel and coolant temperature. The coupled code system is applied to the high-flux research reactor FRM-II (Germany). Several design basis accidents are considered, namely the unintended control rod withdrawal, the loss of offsite power, and the loss of the secondary heat sink as well as a hypothetical transient with large reactivity insertion.