ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
Edward W. Larsen, G. C. Pomraning
Nuclear Science and Engineering | Volume 109 | Number 1 | September 1991 | Pages 49-75
Technical Paper | doi.org/10.13182/NSE91-A23844
Articles are hosted by Taylor and Francis Online.
The PN theory is shown to be an asymptotic limit of transport theory for an optically thick planar-geometry system with small absorption and highly anisotropic scattering. The asymptotic analysis shows that the solution in the interior of the system is described by the standard PN equations for which initial, boundary, and interface conditions are determined by asymptotic initial, boundary layer, and interface layer calculations. The asymptotic initial, (reflecting) boundary, and interface conditions for the PN equations agree with conventional formulations. However, at a boundary having a prescribed incident flux, the asymptotic boundary layer analysis yields PN boundary conditions that differ from previous formulations. Numerical transport and PN results are presented to substantiate this asymptotic theory.