ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Edward W. Larsen, G. C. Pomraning
Nuclear Science and Engineering | Volume 109 | Number 1 | September 1991 | Pages 49-75
Technical Paper | doi.org/10.13182/NSE91-A23844
Articles are hosted by Taylor and Francis Online.
The PN theory is shown to be an asymptotic limit of transport theory for an optically thick planar-geometry system with small absorption and highly anisotropic scattering. The asymptotic analysis shows that the solution in the interior of the system is described by the standard PN equations for which initial, boundary, and interface conditions are determined by asymptotic initial, boundary layer, and interface layer calculations. The asymptotic initial, (reflecting) boundary, and interface conditions for the PN equations agree with conventional formulations. However, at a boundary having a prescribed incident flux, the asymptotic boundary layer analysis yields PN boundary conditions that differ from previous formulations. Numerical transport and PN results are presented to substantiate this asymptotic theory.