ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
G. C. Pomraning
Nuclear Science and Engineering | Volume 108 | Number 4 | August 1991 | Pages 325-330
Technical Paper | doi.org/10.13182/NSE91-A23831
Articles are hosted by Taylor and Francis Online.
Within the context of one-group diffusion theory, we discuss the effect of randomness (stochasticity) on the criticality of a bare nuclear reactor. Previous authors have concluded that randomness decreases the critical size for a given amount of fuel, and that such randomness, when in-troduced into a homogeneous critical reactor, leads most probably to a supercritical state. By considering a sufficiently simple stochastic problem so that exact results can be obtained, we judge these prior conclusions to be only partially correct. We show that the effect of randomness on a criticality problem depends on both the nature of the randomness and the ensemble-averaging procedure and interpretation used to describe the reactor in the stochastic setting.