ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
G. C. Pomraning
Nuclear Science and Engineering | Volume 108 | Number 4 | August 1991 | Pages 325-330
Technical Paper | doi.org/10.13182/NSE91-A23831
Articles are hosted by Taylor and Francis Online.
Within the context of one-group diffusion theory, we discuss the effect of randomness (stochasticity) on the criticality of a bare nuclear reactor. Previous authors have concluded that randomness decreases the critical size for a given amount of fuel, and that such randomness, when in-troduced into a homogeneous critical reactor, leads most probably to a supercritical state. By considering a sufficiently simple stochastic problem so that exact results can be obtained, we judge these prior conclusions to be only partially correct. We show that the effect of randomness on a criticality problem depends on both the nature of the randomness and the ensemble-averaging procedure and interpretation used to describe the reactor in the stochastic setting.