ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Alireza Haghighat
Nuclear Science and Engineering | Volume 108 | Number 3 | July 1991 | Pages 267-277
Technical Paper | doi.org/10.13182/NSE91-A23824
Articles are hosted by Taylor and Francis Online.
A parallel algorithm for angular domain decomposition (or parallelization) of an r-depen-dent spherical Sn transport theory method is derived. The parallel formulation is incorporated into TWOTRAN-II using the IBM Parallel FORTRAN compiler and implemented on an IBM 3090/400 (with four processors). The behavior of the parallel algorithm for different physical problems is studied, and it is concluded that the parallel algorithm behaves differently in the presence of a fission source as opposed to the absence of a fission source; this is attributed to the relative contributions of the source and the angular redistribution terms in the Sn algorithm. Further, the parallel performance of the algorithm is measured for various problem sizes and different combinations of angular subdomains or processors. Poor parallel efficiencies between ∼ 35 and 50% are achieved in situations where the relative difference of parallel to serial iterations is ∼ 50%. High parallel efficiencies between ∼ 60% and 90% are obtained in situations where the relative difference of parallel to serial iterations is <35%.