ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Alireza Haghighat
Nuclear Science and Engineering | Volume 108 | Number 3 | July 1991 | Pages 267-277
Technical Paper | doi.org/10.13182/NSE91-A23824
Articles are hosted by Taylor and Francis Online.
A parallel algorithm for angular domain decomposition (or parallelization) of an r-depen-dent spherical Sn transport theory method is derived. The parallel formulation is incorporated into TWOTRAN-II using the IBM Parallel FORTRAN compiler and implemented on an IBM 3090/400 (with four processors). The behavior of the parallel algorithm for different physical problems is studied, and it is concluded that the parallel algorithm behaves differently in the presence of a fission source as opposed to the absence of a fission source; this is attributed to the relative contributions of the source and the angular redistribution terms in the Sn algorithm. Further, the parallel performance of the algorithm is measured for various problem sizes and different combinations of angular subdomains or processors. Poor parallel efficiencies between ∼ 35 and 50% are achieved in situations where the relative difference of parallel to serial iterations is ∼ 50%. High parallel efficiencies between ∼ 60% and 90% are obtained in situations where the relative difference of parallel to serial iterations is <35%.