ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Alireza Haghighat
Nuclear Science and Engineering | Volume 108 | Number 3 | July 1991 | Pages 267-277
Technical Paper | doi.org/10.13182/NSE91-A23824
Articles are hosted by Taylor and Francis Online.
A parallel algorithm for angular domain decomposition (or parallelization) of an r-depen-dent spherical Sn transport theory method is derived. The parallel formulation is incorporated into TWOTRAN-II using the IBM Parallel FORTRAN compiler and implemented on an IBM 3090/400 (with four processors). The behavior of the parallel algorithm for different physical problems is studied, and it is concluded that the parallel algorithm behaves differently in the presence of a fission source as opposed to the absence of a fission source; this is attributed to the relative contributions of the source and the angular redistribution terms in the Sn algorithm. Further, the parallel performance of the algorithm is measured for various problem sizes and different combinations of angular subdomains or processors. Poor parallel efficiencies between ∼ 35 and 50% are achieved in situations where the relative difference of parallel to serial iterations is ∼ 50%. High parallel efficiencies between ∼ 60% and 90% are obtained in situations where the relative difference of parallel to serial iterations is <35%.