ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. B. Chadwick, P. G. Young
Nuclear Science and Engineering | Volume 108 | Number 2 | June 1991 | Pages 117-125
Technical Paper | doi.org/10.13182/NSE91-A23812
Articles are hosted by Taylor and Francis Online.
The 178Hf(16+) isomeric state has a 31-yr half-life and could pose serious radioactive activation problems in nuclear fusion reactors if its production in 14-MeV neutron-induced reactions is significant. The relatively high excitation energy (2.447 MeV) of this state causes it to lie in the continuum region. If rotational band members above this state were populated in a reaction, they would gamma cascade into it. While the existence of such levels can be justified theoretically, they have not been experimentally resolved; therefore, it is necessary to reconstruct the rotational levels built on the isomeric state. Using preequilibrium and compound nucleus theories, the cross sections for this and other hafnium isomeric states are calculated and compared with experimental measurements where available.