ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
C. R. Drumm, W. C. Fan, J. H. Renken
Nuclear Science and Engineering | Volume 108 | Number 1 | May 1991 | Pages 16-49
Technical Paper | doi.org/10.13182/NSE91-A23805
Articles are hosted by Taylor and Francis Online.
The ability to efficiently model coupled electron-photon transport is essential for determining the response of electronics components to nuclear radiation environments. Furthermore, to fully characterize the effect of many different radiation environments on a component, an adjoint transport capability is desirable. The theory of adjoint electron-photon transport is described with the CEPXSZONEDANT-LD discrete ordinates code package and the method is applied to a set of example problems representative of those encountered in radiation effects testing. Adjoint transport, in addition to efficiently modeling radiation source variations, can effectively model geometry variations for certain classes of problems. A new linear-discontinuous approximation of the continuous slowing down operator that introduces no upscatter is also developed.