ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
J. E. Morel, T. A. Manteuffel
Nuclear Science and Engineering | Volume 107 | Number 4 | April 1991 | Pages 330-342
Technical Paper | doi.org/10.13182/NSE91-A23795
Articles are hosted by Taylor and Francis Online.
An angular multigrid method for the Sn equations has been developed that is much more effective for highly forward-peaked scattering than the diffusion synthetic acceleration (DSA) method. Only one-dimensional slab geometry is considered in this study, but it appears that this method can be generalized to curvilinear and multidimensional geometries. The new method is derived, theoretically analyzed, and computationally tested. The angular multigrid method costs only about twice as much as the DSA method, but it gives a spectral radius of 0.6 in the asymptotic forward-peaked Fokker-Planck scattering limit, whereas the diffusion synthetic method gives a spectral radius of unity.