ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
Masafumi Itagaki, Carlos A. Brebbia
Nuclear Science and Engineering | Volume 107 | Number 3 | March 1991 | Pages 246-264
Technical Paper | doi.org/10.13182/NSE91-A23788
Articles are hosted by Taylor and Francis Online.
The boundary element method is used to generate energy-dependent matrix-type boundary conditions along core/reflector interfaces and along baffle-plate surfaces of pressurized water reactors. This method enables one to deal with all types of boundary geometries including convex and concave corners. The method is applicable to neutron diffusion problems with more than two energy groups and also can be used to model a reflector with or without a baffle plate. Excellent eigenvalue and flux shape results can be obtained when the boundary conditions generated by this technique are coupled with core-only finite difference calculations.