ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
Roger Lee Ritenour, Roger A. Rydin, Robert U. Mulder
Nuclear Science and Engineering | Volume 106 | Number 4 | December 1990 | Pages 457-470
Technical Paper | doi.org/10.13182/NSE90-A23770
Articles are hosted by Taylor and Francis Online.
A variety of scattering model approximations have been devised and evaluated. One such scattering model, designated the balanced single collision thermalization (BSCT) approximation, has proven to be very effective. It assumes that neutrons attain a thermalized distribution with only a single collision within the moderating material, independent of incident energy. This approximation leads to separability of the incident and outscattering energies and to significant simplification of the neutron scattering kernel for thermalization problems. The BSCT approximation is particularly useful in thermalization problems involving cold neutron sources, for which it yields flux predictions to within a few percent of exact solutions of theoretical problems. The BSCT approximation also predicts cold neutron fractions to within 10% of measured values for a cold neutron thermalization experiment done at Argonne National Laboratory.