ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Roger Lee Ritenour, Roger A. Rydin, Robert U. Mulder
Nuclear Science and Engineering | Volume 106 | Number 4 | December 1990 | Pages 457-470
Technical Paper | doi.org/10.13182/NSE90-A23770
Articles are hosted by Taylor and Francis Online.
A variety of scattering model approximations have been devised and evaluated. One such scattering model, designated the balanced single collision thermalization (BSCT) approximation, has proven to be very effective. It assumes that neutrons attain a thermalized distribution with only a single collision within the moderating material, independent of incident energy. This approximation leads to separability of the incident and outscattering energies and to significant simplification of the neutron scattering kernel for thermalization problems. The BSCT approximation is particularly useful in thermalization problems involving cold neutron sources, for which it yields flux predictions to within a few percent of exact solutions of theoretical problems. The BSCT approximation also predicts cold neutron fractions to within 10% of measured values for a cold neutron thermalization experiment done at Argonne National Laboratory.