ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Roger Lee Ritenour, Roger A. Rydin, Robert U. Mulder
Nuclear Science and Engineering | Volume 106 | Number 4 | December 1990 | Pages 457-470
Technical Paper | doi.org/10.13182/NSE90-A23770
Articles are hosted by Taylor and Francis Online.
A variety of scattering model approximations have been devised and evaluated. One such scattering model, designated the balanced single collision thermalization (BSCT) approximation, has proven to be very effective. It assumes that neutrons attain a thermalized distribution with only a single collision within the moderating material, independent of incident energy. This approximation leads to separability of the incident and outscattering energies and to significant simplification of the neutron scattering kernel for thermalization problems. The BSCT approximation is particularly useful in thermalization problems involving cold neutron sources, for which it yields flux predictions to within a few percent of exact solutions of theoretical problems. The BSCT approximation also predicts cold neutron fractions to within 10% of measured values for a cold neutron thermalization experiment done at Argonne National Laboratory.