ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Hrabri L. Rajic, Youcef Saad
Nuclear Science and Engineering | Volume 105 | Number 2 | June 1990 | Pages 136-141
Technical Paper | doi.org/10.13182/NSE90-A23743
Articles are hosted by Taylor and Francis Online.
A robust, fast, and powerful technique, based on Krylov subspace methods, is presented for solving large nonlinear equations of the form F(u) = 0. The main methods investigated are (a) a standard Newton approach coupled with a direct or iterative sparse solver and (b) a Jacobian-free Krylov subspace Newton method. The methods are applied to fluid dynamics problems. In all tested cases, the Jacobian-free Krylov subspace methods based on a nonlinear Generalized Minimum Residual (GMRES) technique show better performance when compared with the standard Newton technique. The importance of selective preconditioners for improving the convergence is demonstrated. The two-dimensional driven cavity problem is solved for Reynolds number 3000, starting from the zero initial guess, using the nonlinear GMRES technique with the line search backtracking.