ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
J. F. Carew
Nuclear Science and Engineering | Volume 104 | Number 4 | April 1990 | Pages 396-401
Technical Paper | doi.org/10.13182/NSE90-A23737
Articles are hosted by Taylor and Francis Online.
An analytic method for analyzing prompt-critical reactivity transients for a nonlinear energy feedback model is derived. The nonlinear point kinetics equation is replaced by a least-squares equivalent linear equation, and an approximate time-dependent reactivity is determined analytically. Assuming the power burst is infinitely sharp and symmetric about the peak, the transient peak energy, power, and pressure are expressed in terms of the inserted reactivity. The resulting expressions allow the definition of an equivalent step reactivity transient that preserves both the peak energy and power. The method is applied to the case where the feedback nonlinearity is small, and simplified expressions for the transient peak energy and power are determined and shown to approximate the known exact results in the case of a ramp reactivity insertion and a linear energy feedback model.