ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Thomas E. Booth
Nuclear Science and Engineering | Volume 104 | Number 4 | April 1990 | Pages 374-384
Technical Paper | doi.org/10.13182/NSE90-A23735
Articles are hosted by Taylor and Francis Online.
The basic quasi-deterministic method provides an approximate importance function in arbitrary user-defined phase-space regions. The approximation is twofold. First, each region is averaged over and becomes a discrete state. Second, Monte Carlo methods estimate transport probabilities and scores between the discrete states. These two approximations lead to a set of linear equations for the state importances that can be deterministically solved. This new method is compared against the standard MCNP importance generator. A generalization of the method provides an importance function in the physical and random number spaces that may be useful for random number biasing techniques.