ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Industry Update—February 2026
Here is a recap of recent industry happenings:
Supply chain contract signed for Aurora
Oklo, the California-based developer of the Aurora Powerhouse sodium-cooled fast-neutron reactor, has signed a contract with Siemens Energy that is meant to de-risk supply chain and production timeline challenges for Oklo. Under the terms, Siemens will design and deliver the power conversion system for the Powerhouse, which is to be deployed at Idaho National Laboratory.
Pedro A. Landeyro, Tadeusz Zoltowski
Nuclear Science and Engineering | Volume 104 | Number 2 | February 1990 | Pages 183-187
Technical Note | doi.org/10.13182/NSE90-A23714
Articles are hosted by Taylor and Francis Online.
The aim of the research was to study the monitoring of keff in some steps of fissile material processing. Two sets of experimental tests were performed. In the first one, variable gradients of concentration were modeled, while in the second one (uniform) the tank was filled at different levels with ura-nyl-nitrate solution having 45 g U/ (80 wt% enriched in 235U). Another uniform configuration series was calculated to cover a range of keff not far from criti-cality. In the last computations, all the calculational models were used to represent experiments in which only the source position changes from the axis of the setup to the position 0.5 cm out of the external surface of the tank. The keff calculations were performed with the KENO-IV Monte Carlo code. The flux computations were carried out with the MORSE C. G. code. The dependence between k∞ and Mepi (the external source epithermal multiplication) previously established was used for the analysis of experimental and calculational tests. Excellent agreement between neutron multiplication or epithermal neutron multiplication measured and calculated values was found. The agreement between keff values obtained from the measured and calculated epithermal neutron multiplication data and KENO-IV results improves with the increase of keff values. The relative differences are within the Monte Carlo calculation error range (∼10%) for keff values >0.65 for the axially located source configurations, >0.37 for configurations when neutron source was located externally and fissile material distributed uniformly, and >0.66 when neutron source was located externally and for configurations with fissile material concentration gradients.