ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
J. J. Honrubia, J. E. Morel
Nuclear Science and Engineering | Volume 104 | Number 2 | February 1990 | Pages 91-111
Technical Paper | doi.org/10.13182/NSE90-A23707
Articles are hosted by Taylor and Francis Online.
A new weighted diamond scheme is developed to solve the linear Fokker-Planck equation for suprathermal charged-particle transport. Such a scheme is based on the preservation of the asymptotic behavior of the linear discontinuous finite element scheme previously proposed. A simpler steplike scheme has been also considered. The results show that the weighted diamond scheme is as accurate as the linear discontinuous one, preserving the energy-position-angle correlation of charged-particle slowing down with less calculational effort. On the contrary, the steplike scheme does not preserve this coupling, giving results similar to those obtained by multigroup methods. A spectral analysis of the iteration of the scattering term shows that the convergence process can be unacceptably slow when the momentum transfer cross section is dominant. Consequently, the weighted diamond scheme has been accelerated by the S2 synthetic method, significantly improving its convergence rate. Finally, the results show that the accelerated weighted diamond scheme is highly effective for electron transport calculations.