ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Industry Update—February 2026
Here is a recap of recent industry happenings:
Supply chain contract signed for Aurora
Oklo, the California-based developer of the Aurora Powerhouse sodium-cooled fast-neutron reactor, has signed a contract with Siemens Energy that is meant to de-risk supply chain and production timeline challenges for Oklo. Under the terms, Siemens will design and deliver the power conversion system for the Powerhouse, which is to be deployed at Idaho National Laboratory.
J. J. Honrubia, J. E. Morel
Nuclear Science and Engineering | Volume 104 | Number 2 | February 1990 | Pages 91-111
Technical Paper | doi.org/10.13182/NSE90-A23707
Articles are hosted by Taylor and Francis Online.
A new weighted diamond scheme is developed to solve the linear Fokker-Planck equation for suprathermal charged-particle transport. Such a scheme is based on the preservation of the asymptotic behavior of the linear discontinuous finite element scheme previously proposed. A simpler steplike scheme has been also considered. The results show that the weighted diamond scheme is as accurate as the linear discontinuous one, preserving the energy-position-angle correlation of charged-particle slowing down with less calculational effort. On the contrary, the steplike scheme does not preserve this coupling, giving results similar to those obtained by multigroup methods. A spectral analysis of the iteration of the scattering term shows that the convergence process can be unacceptably slow when the momentum transfer cross section is dominant. Consequently, the weighted diamond scheme has been accelerated by the S2 synthetic method, significantly improving its convergence rate. Finally, the results show that the accelerated weighted diamond scheme is highly effective for electron transport calculations.