ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Tsuyoshi Misawa, Seiji Shiroya, Keiji Kanda
Nuclear Science and Engineering | Volume 104 | Number 1 | January 1990 | Pages 53-65
Technical Paper | doi.org/10.13182/NSE104-53
Articles are hosted by Taylor and Francis Online.
The Feynman-α experiments were carried out using light-water-moderated and -reflected cores loaded with highly enriched uranium fuel at the Kyoto University Critical Assembly. An experimental technique using a multichannel scaler was developed to improve the accuracy of measurement and to shorten measuring time. Then, the βeff/l values of single and coupled cores with different neutron spectra were measured to demonstrate the capability of the present technique for measuring the prompt neutron decay constant α. Moreover, the Feynman-α method was applied to measuring large subcriticalities. Through these experiments, it is found that the present technique greatly improves the accuracy of a measurement, and the one-point reactor approximation is applicable to a tightly coupled core. It is also found that the subcriticality down to approximately -35 $ can be measured by this method if the position of the neutron detector is chosen carefully, and the present Feynman-α method can be applied to a subcriticality monitoring system.