ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Maria Do Carmo Lopes, Jorge Molina Avila
Nuclear Science and Engineering | Volume 104 | Number 1 | January 1990 | Pages 40-45
Technical Paper | doi.org/10.13182/NSE90-A23700
Articles are hosted by Taylor and Francis Online.
The new approach for calculating neutron self-shielding factors taking into account isotropic multiple scattering, recently developed for the thermal region, is extended to epithermal resonance energies. The method is based on a collision function determined solely by the cross sections and the geometry of the probe submitted to the neutron field. The influence of the external field is separately included in the first collision probability distribution. Some advantages of the method with respect to the transport theory are discussed. Numerical results for the main epithermal resonances in cobalt and gold are presented, including the self-shielding factor as a function of the incident neutron energy.