ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
E. Z. Müller
Nuclear Science and Engineering | Volume 103 | Number 4 | December 1989 | Pages 359-376
Technical Paper | doi.org/10.13182/NSE89-A23689
Articles are hosted by Taylor and Francis Online.
A novel one-dimensional approach, which combines the“nodal equivalence theory” and response matrix homogenization methods, is developed for generating equivalent few-group nodal diffusion parameters for the radial reflector of a pressurized water reactor. This nodal reflector model has the advantage that it is much less sensitive to reactor core conditions than conventional nodal equivalence theory models. A special one-dimensional nodal equivalence theory reflector model is described and applied in numerical experiments to investigate the significance of the environment dependence of such models. Numerical results are presented to confirm the environment insensitivity of the new model and to illustrate its feasibility for application to multidimensional nodal reactor analysis.