ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
J. A. Stillman, Y. A. Chao, T. J. Downar
Nuclear Science and Engineering | Volume 103 | Number 4 | December 1989 | Pages 321-333
Technical Paper | doi.org/10.13182/NSE89-A23685
Articles are hosted by Taylor and Francis Online.
A method is developed to determine the optimum fuel and power distributions for a pressurized water reactor (PWR) burnup cycle. The backward diffusion calculation and the corewise Green’s function method are used for the core model, which provides analytic derivatives for solving the nonlinear optimization problem using successive linear programming methods. The solution algorithm consists of a reverse depletion strategy that begins at the end of cycle and solves simultaneously for the optimal fuel and burnable absorber distributions while the core is depleted to the beginning of cycle. The resulting optimal solutions minimize the required fissile fuel inventory and burnable absorber loading for a PWR.