ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
David Hanlon, Nigel Smith, Jim Gulliford
Nuclear Science and Engineering | Volume 145 | Number 1 | September 2003 | Pages 120-131
Technical Paper | doi.org/10.13182/NSE03-A2368
Articles are hosted by Taylor and Francis Online.
Modern nuclear criticality safety analysis places great reliance on calculations performed using computer codes, in particular, those employing the Monte Carlo method of solution. In the United Kingdom the acknowledged standard Monte Carlo code for criticality safety assessment is MONK. The accuracy achievable with MONK is ultimately governed by the accuracy of the nuclear data employed and their representation within the code nuclear data library. The U.K. industry uses JEFF-based libraries, taking advantage of modern nuclear data evaluations. Following the release of a frozen version of the library (JEF2.2), a program of work was undertaken in the United Kingdom to develop nuclear data libraries for use in reactor physics, shielding, and criticality application codes and to provide benchmark evidence to support their use. For criticality, this involved developing a hyper-fine-group energy library for the MONK code and undertaking a large program of comparison calculations for selected international experiments. A significant contribution to this validation effort has been the high-quality experimental data from the International Criticality Safety Benchmark Evaluation Project (ICSBEP) International Handbook of Evaluated Critical Safety Benchmark Experiments. This paper summarizes the work involved in arriving at the current stage whereby the use of MONK in conjunction with a JEF2.2-based library is accepted within the U.K. nuclear industry. Specific examples are given, where ICSBEP has provided experimental evaluations for application areas previously unsupported by more traditional experimental data sources.