ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
David Hanlon, Nigel Smith, Jim Gulliford
Nuclear Science and Engineering | Volume 145 | Number 1 | September 2003 | Pages 120-131
Technical Paper | doi.org/10.13182/NSE03-A2368
Articles are hosted by Taylor and Francis Online.
Modern nuclear criticality safety analysis places great reliance on calculations performed using computer codes, in particular, those employing the Monte Carlo method of solution. In the United Kingdom the acknowledged standard Monte Carlo code for criticality safety assessment is MONK. The accuracy achievable with MONK is ultimately governed by the accuracy of the nuclear data employed and their representation within the code nuclear data library. The U.K. industry uses JEFF-based libraries, taking advantage of modern nuclear data evaluations. Following the release of a frozen version of the library (JEF2.2), a program of work was undertaken in the United Kingdom to develop nuclear data libraries for use in reactor physics, shielding, and criticality application codes and to provide benchmark evidence to support their use. For criticality, this involved developing a hyper-fine-group energy library for the MONK code and undertaking a large program of comparison calculations for selected international experiments. A significant contribution to this validation effort has been the high-quality experimental data from the International Criticality Safety Benchmark Evaluation Project (ICSBEP) International Handbook of Evaluated Critical Safety Benchmark Experiments. This paper summarizes the work involved in arriving at the current stage whereby the use of MONK in conjunction with a JEF2.2-based library is accepted within the U.K. nuclear industry. Specific examples are given, where ICSBEP has provided experimental evaluations for application areas previously unsupported by more traditional experimental data sources.