ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
No impact from Savannah River radioactive wasps
The news is abuzz with recent news stories about four radioactive wasp nests found at the Department of Energy’s Savannah River Site in South Carolina. The site has been undergoing cleanup operations since the 1990s related to the production of plutonium and tritium for defense purposes during the Cold War. Cleanup activities are expected to continue into the 2060s.
P. Benoist, M. Carta, G. Palmiotti, M. Salvatores, J. Tullett
Nuclear Science and Engineering | Volume 103 | Number 3 | November 1989 | Pages 254-264
Technical Paper | doi.org/10.13182/NSE89-A23676
Articles are hosted by Taylor and Francis Online.
A simple method to calculate the effectiveness of the control assembly in a fast neutron reactor is proposed. For each type of heterogeneous assembly (control or follower), a polar parameter, taking into account the assembly absorption and the axial leakage of neutrons inside the assembly, is defined. In a similar way, a bipolar parameter, taking into account the reaction of the assembly to a transverse flux gradient, is also defined. These two parameters, deduced from transport theory, are used to determine the absorption cross section and the diffusion coefficient of an equivalent homogeneous control or follower assembly. These new parameters are introduced in a one-group diffusion code, calculating the reactor as a whole with any number of control and follower assemblies. An approximate generalization to multigroup theory is proposed. Numerical comparisons show that this equivalent diffusion method gives results that are much closer to transport results than those obtained by the classical diffusion theory.