ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
M. Sugimoto, P. T. Guenther, J. E. Lynn, A. B. Smith, J. F. Whalen
Nuclear Science and Engineering | Volume 103 | Number 1 | September 1989 | Pages 37-45
Technical Paper | doi.org/10.13182/NSE89-A23658
Articles are hosted by Taylor and Francis Online.
Neutron total cross sections of elemental beryllium are measured from 1 to 10 MeV with good precision. Differential neutron elastic scattering cross sections are measured from 4.5 to 10 MeV at intervals of ≈0.5 MeV and at ≈100 angular steps distributed between ≈18 and 160 deg at each incident energy. Concurrently, differential cross sections for the emission of a discrete inelastic neutron group corresponding to an excited level at (2.43 ± 0.06) MeV are determined over the same incident energy and angular range. Angle-integrated elastic scattering cross sections are deduced from the observed differential values to accuracies of ≈2.5%, and angle-integrated inelastic scattering cross sections to accuracies of ≈10%. The experimental results are compared with values given in ENDF/B-V, with attention to discrepancies and implications. Qualitative reaction mechanisms are suggested.