ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
D. L. Henderson, C. W. Maynard
Nuclear Science and Engineering | Volume 102 | Number 2 | June 1989 | Pages 172-182
Technical Paper | doi.org/10.13182/NSE89-A23641
Articles are hosted by Taylor and Francis Online.
Time-dependent integral transport equation single-collision kernels for one-dimensional geometries corresponding to the steady-state single-collision kernels found in the available literature have been calculated by making use of the Laplace transform technique, simple geometric transformation relationships, and point kernel integrations. Using the convolution theorem, the time-dependent scalar flux is obtained by convoluting the single-collision kernel with the time-dependent source. Using the multiple collision formulation of the integral transport solution, isotropic sources that are delta distributions in time are considered in several examples. Analytical solutions for the uncollided and first-collided scalar fluxes are obtained for a boundary source having an isotropic angular distribution directed into a semi-infinite medium and into a slab of thickness b and for a point source at the origin of an infinite medium and finite sphere of radius a. A closed form solution is obtained for the simple problem of uniformly distributed sources within an infinite medium.