ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
A better model? Low levels of radiation and health effects
One of the more pivotal issues in facilitating the use of radiation sources—including nuclear power—in the United States (and most of the Western world) is concern about the health effects of low levels of radiation. The current regulatory assumption is that every additional increment of radiation linearly increases the risk of cancer.
Victor Iannello, Neil E. Todreas
Nuclear Science and Engineering | Volume 101 | Number 4 | April 1989 | Pages 315-329
Technical Paper | doi.org/10.13182/NSE89-A23621
Articles are hosted by Taylor and Francis Online.
Mixed convection flow for parallel vertical channels connected at upper and lower plenums is studied. The one-dimensional conservation equations are formulated in dimensionless form using channel integral parameters. Based on this formulation, expressions are derived for stable flow and reversal of channel flow. The equations are then used to calculate the flow redistribution within a liquid-metal reactor core during natural circulation primary loop flow. A channel/plenum interaction phenomenon, which limits the applicability of using one-dimensional formulations, is modeled, and a correlation is formulated utilizing measured results to predict the onset of this behavior. Finally, the reversal of a heated channel from upflow to downflow, which cannot be predicted with a onedimensional analysis, is described, and the channel/plenum interaction previously modeled is proposed as the mechanism that initiates this flow reversal.