ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Chae Y. Yang, Nam Z. Cho
Nuclear Science and Engineering | Volume 101 | Number 3 | March 1989 | Pages 243-258
Technical Paper | doi.org/10.13182/NSE89-A23612
Articles are hosted by Taylor and Francis Online.
A nonlinear reactor model is developed taking into account several feedback effects, such as moderator and fuel temperatures, xenon absorption, and soluble boron concentration, through energy balance relations in the core. The resulting equation belongs to a class of nonlinear boundary value problems, and it is shown through bifurcation theory that there may exist multiple steady-state solutions for a range of parameters that correspond to various design and operating conditions. Solutions are obtained numerically for ranges of the parameters by the arc-length continuation method in combination with Newton’s method. Stability analysis is also applied to each solution to investigate whether the solution is stable or not. When the stable and unstable regions of the steady-state solutions are plotted for a wide range of the parameters, we can choose a range of the reactor design and operating conditions such that the reactor does not encounter unstable situations.