ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
E. A. Fischer
Nuclear Science and Engineering | Volume 101 | Number 2 | February 1989 | Pages 97-116
Technical Paper | doi.org/10.13182/NSE89-A23600
Articles are hosted by Taylor and Francis Online.
New experimental results on the vapor pressure of UO2 up to extremely high temperatures have recently become available. These vapor pressure data, obtained by advanced experimental techniques, are lower than the ones used thus far at Kernforschungszentrum Karlsruhe. It was, therefore, appropriate to carry out a completely new evaluation of the equation of state (EOS) of UO2- Eyring’s significant structures theory, which was extended to the case of nonstoichiometric urania, was applied for this work. The extended theory is described in some detail. By a suitable choice of the model parameters, good agreement of the evaluated EOS with recent experimental data was obtained, which is additional evidence of the reliability and consistency of the recent data. The extrapolation predicts a critical temperature of 10 600 K, which is higher than earlier predictions.