ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
D. W. Muir
Nuclear Science and Engineering | Volume 101 | Number 1 | January 1989 | Pages 88-93
Technical Note | doi.org/10.13182/NSE89-A23596
Articles are hosted by Taylor and Francis Online.
Optimum procedures for the statistical improvement, or adjustment, of an existing data evaluation are redeveloped from first principles, consistently employing a minimum-variance viewpoint. A set of equations is derived that provides improved values of the data and their covariances, taking into account information from supplementary measurements and allowing for general correlations among all measurements. The minimum-variance adjustment equations thus obtained are found to be equivalent to a method suggested by Linnik and applied by a number of authors to the analysis of fission reactor integral experiments. The minimum-variance solution is also shown to give the same results as the commonly applied normal equations, but with reduced matrix inversion requirements. Examples are provided to indicate some potential areas of application.