ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
G. L. Wilson, R. A. Rydin, Y. Y. Azmy
Nuclear Science and Engineering | Volume 100 | Number 4 | December 1988 | Pages 414-425
Technical Paper | doi.org/10.13182/NSE88-A23574
Articles are hosted by Taylor and Francis Online.
Two new “low-” and “high-order” time-dependent nodal-integral methods were developed and applied to both incompressible fluid flow and natural convection. These new methods have a high level of accuracy on a coarse mesh, high efficiency, and an ability to reproduce results using various time-step sizes independent of a Courant condition. These new methods are applied to various benchmark problems, such as double-glazing, to verify their accuracy in space and time. Other applications to bifurcation searches and stability of flow fields verify their accuracy and their ability to duplicate natural phenomena without exhibiting problems with spurious solutions, turning points, and bifurcation points. The new methods are also used to verify the existence of critical values of the aspect ratio. The means by which alternative stable solutions can be obtained from a no-flow initial condition for a critical aspect ratio are also examined.