ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
H. Hirayama, D. K. Trubey
Nuclear Science and Engineering | Volume 99 | Number 2 | June 1988 | Pages 145-156
Technical Paper | doi.org/10.13182/NSE88-A23555
Articles are hosted by Taylor and Francis Online.
The effects of including incoherent and coherent scattering in a calculation of the exposure buildup factors for plane normal gamma-ray sources have been investigated by using an electron-gamma-ray shower Monte Carlo code, EGS4, for water, iron, and lead in the 40- to 200-keV range. The “true” buildup factors and “pseudo” buildup factors for practical uses are defined to clarify the effects of bound-electron Compton (incoherent) and coherent scattering and are tabulated for penetration depths up to 10 mfp. The pseudo buildup factor increases by including incoherent scattering and decreases by including coherent scattering. The degree of each effect varies with the atomic number of the material. The effect of incoherent scattering is large for materials of small atomic number, and the effect of coherent scattering is large for materials of large atomic number.