ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Takeshi Matsuoka, Michiyuki Kobayashi
Nuclear Science and Engineering | Volume 98 | Number 1 | January 1988 | Pages 64-78
Technical Paper | doi.org/10.13182/NSE88-A23526
Articles are hosted by Taylor and Francis Online.
A reliability analysis methodology, GO-FLOW, is presented. Detailed explanations and two examples of GO-FLOW analysis are given. The GO-FLOW is a success-oriented system analysis technique. The modeling technique produces the GO-FLOW chart, which is composed of operators and signal lines and represents a function of the system. A signal does not represent a “change of condition” but some physical quantity or information. The intensity of a signal represents the probability of actual or potential existence of a physical quantity, the probability that some information exists, or a time interval between two successive time points. The examples of analysis show the applicability of the GO-FLOW method to a phased mission problem (a boiling water reactor emergency core cooling system) and to a time-dependent unavailability analysis (a pressurized water reactor auxiliary feedwater system). The GO-FLOW has proved to be a valuable and useful tool for system reliability analysis.